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Abstract
We report on the measurement of the three-dimensional electron momentum
density (EMD) of solids by means of the (γ , eγ ) reaction. Fixing the
reaction kinematics by a coincidence condition, the triple-differential cross
section for Compton scattering is proportional to the EMD. The experiments
were performed either at the wiggler beamline of the European Synchrotron
Radiation Facility (ESRF) or the undulator beamline of the PETRA storage
ring at Deutsches Elektronen-Synchrotron (DESY) with photon energies of
about 150 keV. Experimental three-dimensional EMDs of graphite, fullerene
and aluminium are compared with theoretical ones obtained from band-structure
calculations like the full-potential linear muffin-tin orbital, augmented-plane-
wave and pseudopotential formulations. In addition, the change of the EMD
caused by alloy formation has been studied in the Cu–Ni system and the
results are compared with the Korringa–Kohn–Rostoker coherent potential
approximation.

1. Introduction

The strong interest in the electronic structure of solids led to the development of a large variety of
experimental methods for the study of energy dispersion and density of states both for occupied
and unoccupied bands: photoemission spectroscopy [1], inelastic x-ray scattering [2], electron
energy-loss spectroscopy [3], x-ray absorption spectroscopy [4], to name but a few. In contrast,
few methods exist which measure directly wave-function-related quantities such as the real-
space electron density (x-ray form factors) or momentum densities. These latter include the
two-dimensional angular correlation of annihilation radiation (2D-ACAR) [5]—which, strictly
speaking, measures the electron–positron pair density ρ2γ (p) [6]; see section 2—and (γ , eγ )
and (e, 2e) spectroscopy [7]. (γ , eγ ) experiments which are reviewed in this article are
an extension of conventional Compton scattering where the double-differential cross section
describing the energy and angular distribution of the scattered radiation is proportional to
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the so-called Compton profile, which is defined as a twofold integration over the electron
momentum distribution (EMD). This integration results from the lack of information about the
momentum distribution of the recoiling electrons.

Since integration averages over large volumes in momentum space, detailed information
about solid-state effects like Fermi surfaces or electron correlations might become difficult to
obtain. It is therefore desirable to measure the EMD directly by fixing the complete scattering
kinematics: if the momenta of the primary and scattered photon in addition to that of the recoil
electron are measured simultaneously, i.e. in coincidence, the momentum of the electron in
its initial state can be determined in a unique way. The corresponding triple-differential
cross section is proportional to the EMD itself. (We mention that the 3D-EMD can also be
obtained indirectly by means of non-coincident Compton scattering if a rather large number
of directional Compton profiles are measured and finally reconstruction techniques based on
Fourier transforms are employed [8].) The main difficulty of a (γ, eγ ) coincidence experiment
originates in the strong incoherent elastic scattering of the recoiling electron within the target
which disturbs the determination of the recoil momentum by causing multiple scattering. Since
the mean free path for elastic scattering of electrons with recoil energies of tens of keV is only
about 100 nm, self-supporting targets are required which are as thin as possible.

This has drastic implications for the coincident count rate: the mean free path for Compton
scattering in carbon at a photon energy of 180 keV is 3 cm. Thus, in a 20 nm thin foil only
one out of 106 photons will be scattered. To determine the photon and electron momenta,
rather small solid angles of both the photon and electron detector are required. Assuming as
a guess an isotropic angular distribution of the scattered photons, a solid angle of the photon
detector of 10−4 srad yields another factor, 105. With a rather coarse angular resolution of
the recoil momenta and a coincidence count rate of several Hz, we end up with a desired
monochromatized photon flux of 1012 photons s−1 at the target. This flux at photon energies of
about 180 keV can only be delivered by modern synchrotron radiation sources with large lepton
energies. Thus, experiments have been performed at the high-energy x-ray scattering beamline
ID15A of the ESRF (electron energy 6 GeV), which is equipped with an asymmetric wiggler
with seven periods and strong magnetic poles of 1.8 T, and at the new undulator beamline at
the PETRA storage ring (12 GeV) at DESY.

A method very similar to the (γ , eγ ) one is the (e, 2e) reaction where instead of a photon
an energetic electron is used as projectile [9]. Again, multiple electron scattering within the
target is the most severe problem. Comparing (γ , eγ ) and (e, 2e) experiments the situation is
more ‘relaxed’ in the former case since at least the photon will not be multiply scattered. The
advantage of the (e, 2e) technique is its large cross section and its monochromatic projectile flux.
A highly monochromatic electron flux of 1012 electrons s−1 ( 100 nA) is easily achieved whereas
comparable photon fluxes with considerably less monochromaticity are obtained only from
synchrotron radiation facilities of the third generation. Altogether, this allows the introduction
of electron spectrometers in (e, 2e) experiments which in turn makes it possible to measure the
EMD of solids as a function of the valence binding energy with a resolution of about 1.5 eV [9].

2. Method

If a photon with energy ω and momentum k is scattered at an electron with binding energy
ε > 0 and momentum p, energy and momentum conservation laws yield for these energies
and momenta (we use atomic units)

ε = ω − ω′ − E′ (1)

p = k′ + p′ − k (2)
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where (ω′,k′) and (E′,p′) are the energies and momenta of the photon and electron after the
interaction. Thus, if k, k′ and p′ are known experimentally, p can be determined in a unique
way. For the coincident detection of both the scattered photon (ω′,k′) and the recoil electron
(E′,p′) the triple-differential cross section

d3σ

dω′ d�γ d�e
= ω

ω′p
′
(

dσ

d�γ

)
KN

ρ(p) (3)

holds [10], where ρ(p) is the EMD and (dσ/d�γ )KN the Klein–Nishina cross section for
linearly polarized photons. The validity of the so-called impulse approximation is assumed.

Usually, the EMD for crystalline solids is obtained from a band-structure calculation. Due
to translational invariance the corresponding wave functions are Bloch waves:

φk,i (r) = uk,i (r)e
ik·r (4)

where the crystal momentum k is restricted to the first Brillouin zone and i is the band index.
From the lattice periodicity of uk,i (r) it follows that

uk,i (r) =
∑

g

Ag,i (k)e
ig·r. (5)

Evaluating the Fourier transform φk,i (p) of equation (4) yields the EMD ρ(p):

ρ(p) = 2
∑
k,g,i

ni(k)
∣∣φk,i (p)

∣∣2
(6)

or

ρ(p) = 2
∑
k,g,i

ni(k)
∣∣Ag,i (k)

∣∣2
δ(p − k − g). (7)

ni(k) are the occupation number densities. Within the independent-particle model they are
equal to unity for momenta smaller than the Fermi momentum and zero above. This holds for
the reduced zone scheme. Non-diagonal elements nij of the occupation number density due
to electron–electron interaction (equivalent to the configuration interaction in Hartree–Fock
theory) are believed to be negligible, at least when the nearly-free-electron approximation is
applicable [11]. For comparison we mention that the corresponding expression in the case of
ACAR yields for the electron–positron pair density [12]

ρ2γ (p) = 2
∑
k,g,i

ni(k)
∣∣A+−

g,i (k)
∣∣2
δ(p − k − g) (8)

where the Fourier components of the corresponding electron–positron Bloch state are given
by

A+−
g,i (k) =

∑
g′
A+

g′(0)A−
g−g′,i (k) (9)

where A− and A+ are the separate Fourier components of the electron and positron wave
function respectively. It is readily seen that except for a positron wave function u+

0(r) =
constant, i.e. A+

g = δ(g), the densities of equations (7) and (8) are different.

3. Experiment

The (γ , eγ ) experiments were performed either at the high-energy x-ray undulator beamline
of HASYLAB at the 12 GeV PETRA storage ring [13] or at the wiggler beamline ID15A of
the 6 GeV storage ring of the ESRF [14]. Since the experimental set-ups are not very different
we describe in the following that of the PETRA experiment only. The white photon beam was
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monochromatized by a planar, slightly disordered Si crystal in the Laue geometry [15]. The
disorder widens the rocking curve considerably compared to the Darwin width of a perfect
crystal and matched the monochromaticity of the photon beam (width σω = 0.35 keV) with
the energy resolution of the photon detector (see below) without a major loss of reflectivity.
Thus, a photon flux of 2 × 1012 photons s−1 in a beam spot of 2 × 2 mm2 could be reached
at a photon energy of 180.3 keV and an average storage ring current of 30 mA. For photon
detection we implemented a two-dimensional array of 12 intrinsic Ge diodes (energy resolution
σω′ = 0.32 keV) which was mounted externally to the evacuated target chamber at a scattering
angle of θ = 150◦ (figure 1).
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T
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´

´
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||
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Figure 1. The experimental (γ , eγ ) set-up: Ge, 12-pixel Ge diode; T, target; PSD, 32-pixel
position-sensitive electron detector.

The unscattered photon beam was accurately dumped in a lead-shielded hollow body to
minimize the x-ray background. The electrons were identified by a position-sensitive detector
(PSD) consisting of a two-dimensional array of 32 individual PIN diodes. The detector arrays
were set up in such a way that the vector q0 = k − k′

0, i.e., the momentum transfer to an
electron initially at rest, was pointing at the centre of the PSD, while k′

0, the momentum of the
corresponding scattered photon, was defined by the centre of the Ge diode array. The surface
normal of the target foils was parallel to q0. The final electron momentum p′ is obtained
from the energy conservation law of equation (1) by neglecting the binding energy ε which is
small (tens of eV at most) compared to ω′

0 = 108.7 keV, where ω′
0 is the photon energy after

scattering from an electron at rest. A momentum transfer q0 = 75.0 au guarantees the validity
of the impulse approximation. The angle between q0 and k′

0 (figure 1) is δ = θ + φ = 161.2◦.
We use a Cartesian coordinate system for the electron momentum p where thepz-component is
parallel to q0 and the px-component is lying in the (k,k′

0) scattering plane. In this coordinate
system, the initial electron momentum components read

px = q0β‖ −
(
ω′

0

c
cos δ

)
α‖ +

(
1

c
sin δ

)
 ω′ (10)

py = q0β⊥ +
ω′

0

c
α⊥ (11)

pz =
(
ω′

0

c
sin δ

)
α‖ − c sin δ

ω′
0 sin θ

 ω′ (12)

where α‖,⊥ and β‖,⊥ are the angular deviations of k′ from k′
0 and p′ from q0 respectively

(figure 1) and ω′ = ω′ −ω′
0 is the photon Doppler broadening. Each detector channel in the

photon and electron branch was provided with an independent pre-amplifier and main amplifier
and discriminator. The pre-amplified photon signals were processed by a spectroscopy
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amplifier delivering a fast and slow output signal. The discriminated fast signal served as
a gate for the coincidence unit; the amplitude of the slow signal was used for the measurement
of the final photon energy ω′. If the coincidence unit detected a discriminated electron signal
within the open gate, the complete data sets of both the coincidence unit and the ADC were
read out via a VME bus.

Detailed Monte Carlo (MC) simulations of the momentum resolution R(px, py, pz) of
the (γ , eγ ) spectrometer included the correlated scattering due to the triple-differential cross
section of equation (3), solid angles and energy resolution of the Ge diodes, energy broadening
of the primary photon beam and the extended beam spot at the target. Since the photon energy
resolution particularly influences both the px- and pz-resolution (see equations (10)–(12)),
they are not independent of each other. The surfaces R = constant are to a good approx-
imation ellipsoids with principal axes which, due to this dependence, are rotated away from
the Cartesian coordinate system by a small angle. Thus, we fitted a trivariate Gaussian to the
MC simulation, and from the diagonal elements of the resulting covariance matrix we obtained
the standard deviations (σxx, σyy, σzz) = (0.14, 0.14, 0.27) au and non-vanishing off-diagonal
elements σ 2

xz = σ 2
zx = −7.4 × 10−3 au2 leading to a small anti-correlation. Whenever in the

following the experiment is compared with theory, the latter has been folded with the trivariate
Gaussian described above.

4. Results and discussion

4.1. Graphite

The mean free path for 70 keV recoil electrons in graphite is 90 nm [16], which requires thin
target foils to suppress multiple scattering. They were made either by laser plasma ablation
(lpa) or by thermal evaporation (te). In the former case pure graphite was irradiated by a
30 GW cm−2 Nd:YAG laser for about 10 ns [17, 18]. The ablated single C atoms with an
average energy of a few eV were collected on a thin betaine film which had a fine crystalline-
like structure that acted as a replica for the graphite film and guaranteed a high mechanical
stability. The te-foils were made by evaporation of graphite heated to about 3200 K. At
such moderate temperatures the evaporated species are not monatomic but carbon clusters of
different sizes [19]. These clusters are fragments of the (002) planes and leave the graphite
surface with thermal energies of about 0.3 eV [17]. Impinging on the surface of the substrate,
they do not have sufficient kinetic energy to break the molecular bonds. Again, the evaporated
material was condensed on a betaine film which was finally dissolved in water and the self-
supporting lpa- or te-foils were mounted on a stainless steel frame. The thicknesses of the films
were determined by light transmission and were 17 nm for the lpa-foil and 18 nm for the te-foil.
The mounted foils were finally laser annealed: the te-foil at 4200 K for about 10 ns [20] and the
lpa-foil for 30µs at about 3000 K [18]. Transmission electron microscopy revealed a complete
graphitization of the foils and that the average lengthLa of the basal planes was increased from
less than 1 nm immediately after condensation to about 10 nm by this treatment. Foils which
had been prepared under identical conditions have been extensively investigated by means of
either high-resolution electron microscopy (HREM) or electron diffraction (ED) with 80 keV
electrons [20]. While for the lpa-foil all low-index rings of graphite can be observed and
their intensity pattern indicates an isotropic distribution of crystallites [18, 20], the (002) ring
is missing in the case of the te-foil. Since diffraction angles are small for 80 keV electrons
(&002 = 6.2 mrad) the lack of this ring implies that (002) planes cannot lie more or less
perpendicular to the foil surface. ED patterns from the edge of a folded foil where the surface
was nearly parallel to the electron beam developed (002) rings. This clearly demonstrates
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that for te-foils the basal planes were arranged mostly parallel to the foil surface, repeating in
essence the results of Klein [21] on evaporated carbon films.

In the following, experimental EMDs will be compared with theoretical ones obtained from
band-structure calculations [22]. To do that, the experimental data have been normalized to an
effective number of electrons by integrating both experiment and theory over the same volume
in momentum space which is determined by experimental conditions. Theoretical EMDs are
based on either an empirical pseudopotential (PP) method [23] with potential parameters from
Reed et al [24], the full-potential linear muffin-tin orbital (FP-LMTO) [25] or the modified
augmented-plane-wave (MAPW) method [26]. All calculations were performed within the
general scheme of density functional theory (DFT). In the FP-LMTO method non-overlapping
muffin-tin spheres are introduced and the electron potential and the charge density are expanded
in spherical harmonics inside the spheres and Fourier transformed in the interstitial region. In
the present calculation, 2410 plane waves were used for the representation of the charge density
and the potential in the interstitial region. 250 (k + g) terms were used in the Fourier sums. 77
k-points were produced by division of the irreducible Brillouin zone. After self-consistency
of the electron potential and the charge density had been achieved, the angular averaging
of the EMD was performed. In the MAPW scheme the electron potential is assumed to be
of warped-muffin-tin form, e.g., spherically symmetric within the non-overlapping (APW)
spheres centred at each C atom and described by a superposition of plane waves outside the
spheres. In the whole atomic cell each Bloch function is expressed by a superposition of up to
364 plane waves and is augmented inside the APW spheres by properly chosen solutions of the
radial differential equation with the spherically symmetric potential. Both the wave functions
as well as their first derivatives are exactly continuous at the surface of the APW spheres [27].
This guarantees the rapid decay of the Fourier transform of the Bloch functions. The MAPW

Figure 2. The EMD for the te-foil (a) and the lpa-
foil (b) as functions of p⊥ at p‖ = 0. PP: broken
line; FP-LMTO: solid line; MAPW: dash–dotted
line.
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scheme is an all-electron method which treats the core and valence electrons on an equal footing.
Due to the structure of the foils observed by means of ED, the theoretical EMDs have been
either spherically averaged to represent the lpa-targets or azimuthally averaged in the case of
the te-foil. The momentum component parallel to the c-axis is called p‖ = pz, the component
within the basal plane p⊥ = √

(p2
x + p2

y). Electron multiple scattering has been taken into
account by convoluting theoretical EMDs with elastic scattering distributions obtained from
Monte Carlo simulations [7,28]. This procedure has been applied for all comparisons between
experiment and theory reported in this review.

To allow a quantitative comparison, the following figures show one-dimensional cuts
through the EMDs. Figures 2(a) and 2(b) show ρ(p⊥, p‖ = 0) for the te- and lpa-foils
respectively. Data points are compared with PP (broken curve), FP-LMTO (solid curve) and
MAPW (dash–dotted curve) calculations. Evidently, FP-LMTO and MAPW calculations (with
a slight tendency of the MAPW calculations to be superior to FP-LMTO calculations in the
case of the lpa-foil) describe the data better than PP calculations, a fact which has also been
recognized by Metz et al [28]. But we also observe that the often-cited deficiency of a PP
calculation of not reproducing the wave-function oscillations near the nuclei and therefore of
underestimating the EMD at large momenta [29] is not significant for the comparison with our
data. The discrepancy between our data and PP results is not due to an underestimation of
high-momentum components—and therefore a reduction of intensity at small momenta due to
charge conservation—but due to different slopes for experiment and theory. On the other hand,
non-coincident Compton scattering experiments also revealed that the PP calculations by Reed
et al [24] tend to overestimate momentum anisotropies [30, 31]. In figure 3, ρ(p⊥ = 0, p‖)

Figure 3. The EMD for the te-foil (a) and
the lpa-foil (b) as functions of p‖ at p⊥ = 0.
PP: broken line; FP-LMTO: solid line; MAPW:
dash–dotted line.
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is compared with theory for the te-foil (figure 3(a)) and the lpa-foil (figure 3(b)). Whereas
the FP-LMTO and MAPW calculations clearly describe the data better at small momenta, the
PP calculation is slightly superior at larger momenta, though the effect is not strong enough
to favour the PP description within the uncertainty of our data. The sequence of theories,
compared with experiment and shown by the 1D cuts of figures 2 and 3, is also supported by
the global fits of the complete 3D-EMD: the normalized χ2/n (n: number of bins) is 2.15
(MAPW), 3.07 (FP-LMTO) and 3.80 (PP) in the case of the te-foil, and 2.22 (MAPW), 2.40
(FP-LMTO) and 2.71 (PP) for the lpa-foil.

Figure 4 shows the difference of the EMDs from te- and lpa-foils ρ(p⊥ = constant, p‖)
for p⊥ = 0.0 au (figure 4(a)), p⊥ = 0.9 au (figure 4(b)), p⊥ = 1.3 au (figure 4(c)) and
p⊥ = 1.5 au (figure 4(d)). Though the error bars are rather large, the minimum at p‖ = 0
is better described by FP-LMTO and MAPW calculations than by the PP calculation. In

Figure 4. The difference  ρ: the EMD of the
te-foil minus that of the lpa-foil, as a function of
p‖ for different values of p⊥. PP: broken line;
FP-LMTO: solid line; MAPW: dash–dotted line.
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figure 5 the differences of the EMDs from te- and lpa-foils are plotted as functions of the
electron momentum p⊥ in the basal plane for p‖ = 0.3 au (figure 5(a)), p‖ = −0.1 au
(figure 5(b)), p‖ = −1.0 au (figure 5(c)) and p‖ = −1.4 au (figure 5(d)). Experimental data
are compared again with PP (broken curve), FP-LMTO (solid curve) and MAPW (dash–dotted
curve) calculations. Again, the anisotropy is better reproduced by the FP-LMTO and MAPW
calculations than the PP one. We mention that the PP calculation of Lou et al [23] also failed to
describe the non-coincident Compton scattering experiment on pyrolytic graphite of Manninen
et al [32]. A more qualitative demonstration of the anisotropy of the graphite EMD is shown in
figure 6(a) where contour lines of the difference of the theoretical EMDs, i.e., basal averaged
minus spherically averaged EMD, are plotted as functions of p⊥ and p‖. Figure 6(b) shows
the influence of resolution and electron multiple scattering on this difference. Evidently, the
strength of the anisotropies is reduced, but the general structure is retained. In figure 6(c) the

Figure 5. The difference  ρ: the EMD of the
te-foil minus that of the lpa-foil, as a function of
p⊥ for different values of p‖. PP: broken line;
FP-LMTO: solid line; MAPW: dash–dotted
line.
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Figure 6. The azimuthally minus the spherically averaged
EMD. Solid lines represent a positive difference, dashed
lines a negative one, and the dotted line indicates zero
difference. The theoretical FP-LMTO difference (a),
the theoretical difference corrected for experimental res-
olution and electron multiple scattering (b) and the
experimental difference (c). The latter has been symmet-
rized with respect to p‖ = 0. The difference between the
lines is 0.005 au−3 in each case.

experimental difference is plotted and should be compared with the theoretical difference of
figure 6(b). The comparison reveals that the general features of the experimental anisotropies
are reproduced by theory.

4.2. Fullerene

The most remarkable difference between the EMDs of graphite and C60 is the increased density
of C60 compared to graphite at small momenta [28]. The bending of the graphite basal planes
to form the buckyball induces a hybridization of wave functions with s character with those
of the π -electrons, which results in a charge transfer from the interlayer region into the shell
of the C60 spheres [33, 34]. (Nevertheless, bonding is closer to the sp2 hybrids of graphite
than to the sp3 bonding in diamond [35].) Consequently, a DFT calculation in the local
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density approximation (LDA) revealed that the electron density for most of the 120 bands in
fullerene showed a larger overlap among the nearest-neighbour carbon atoms in the C60 ball
compared to graphite [36]. This kind of delocalization results apparently in an enhancement
of the EMD at small momenta. A comparison of one-dimensional cuts through the EMD of
fullerene with either the FP-LMTO calculation for graphite or the molecular C60 calculation
showed that experiment could not distinguish between the two theories within error bars [28].
To improve the statistics we have summed up all coincidence events for a constant pz-value.
The resulting coincident Compton profile Jcoinc(pz) is not identical to a non-coincident one
due to the limited integration range in the px- and py-directions which results from the finite
extent of the electron detector, but besides the increase in statistics it also has the advantage
that measurements in coincidence provide photon spectra free from any background radiation.
Again, experimental Jcoinc have been normalized to the effective number of electrons given
by the restricted range of momenta. Figure 7 shows the experimental Jcoinc as a function
of pz (data points) together with the corresponding molecular fullerite calculation [28]. The
agreement is at the per cent level. To enlarge possible differences, we have plotted in figure 8
the relative difference  Jcoinc = [(Jexp − Jtheor )/Jexp] × 100 where Jexp is the experimental
coincident Compton profile and Jtheor the corresponding theoretical profile, i.e. the theoretical
EMD has been integrated over the limited (px, py) range mentioned above. Open circles
are from the FP-LMTO calculation for graphite; full circles represent the molecular C60

calculation. Though the relative difference is rather small, experiment clearly favours the
C60 calculation. Figure 8 also demonstrates the above-mentioned momentum transfer towards
smaller momenta if C60 is formed from graphene sheets: due to norm conservation this is
reflected by Jexp(C60) < Jtheor (graphite) for large momenta.
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Figure 7. The experimental coincident Compton profile Jcoinc (dots) compared to the molecular
C60 calculation.

4.3. Aluminium

A comparison between the experimental EMD and results from band-structure calculations has
been made. In essence, the Fourier components Ag,i (k) of equation (5) have been calculated
by the linear muffin-tin orbital method either in the atomic sphere (ASA-LMTO) [37] or the
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Figure 8. The relative difference Jcoinc for the FP-LMTO calculation for graphite (open circles)
and the C60 calculation (dots).

full-potential approximation (FP-LMTO) [25]. In the ASA-LMTO calculation a unit cell of
the crystal is substituted for with a number of overlapping atomic spheres with no room left
for the interstitial region. The electron potential is assumed to be spherically symmetric inside
the spheres. In the FP-LMTO calculation a number of non-overlapping muffin-tin spheres are
introduced; the potential is expanded in spherical harmonics inside the spheres and Fourier
transformed in the interstitial region. This treatment of the interstitial region provides superior
accuracy at the price of increasing computation time.

2D or 3D EMDs of aluminium have been measured in the past both by the ACAR [5,38]
and by the (e, 2e) technique [9,39,40]. For comparison with 2D-ACAR data we have evaluated
from our results the angular correlation density [41]

ρ2D(px, py) =
∫
ρ(px, py, pz) dpz (13)

which is plotted in figure 9 together with 2D-ACAR from reference [38]. It is readily seen that
in the ACAR data the EMD is cut-off at px = py

∼= 1 au due to the positron wave function
being repelled from the ion core. Recent calculations by Alatalo et al [42] show a drastic
reduction of the positron wave function in aluminium for distances below 2 au in real space.
This in turn means that high-momentum componentsA+

g in equation (9) strongly influence the
electron–positron pair density ρ2γ . Nothing like that happens in the (γ, eγ ) experiment which
shows appreciable intensity beyond 1 au due to the core states.

If all the events for a constant pz-value are summed up we obtain again a coincident
Compton profile Jcoinc, a procedure which increases the statistics considerably. Due to the
limited range of our experiment in the px- and py-directions, the contribution of core states
to Jcoinc is strongly reduced if compared with a non-coincident Compton profile. In figure 10
we compare Jcoinc with theory: the dash–dotted curve is from ASA-LMTO calculation, and
the dotted curve results from FP-LMTO calculation, demonstrating that FP-LMTO calculation
agrees better with experiments than ASA-LMTO calculation. This seems to point to a general
problem if EMDs are obtained from Fourier-transformed wave functions which have been
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Figure 9. 2D angular correlation plots for (γ , eγ ) and ACAR measurements [38].

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5

4

p
z
 [a.u.]

J co
in

c(p
z) 

[a
rb

. u
ni

ts
]

0 0.2 0.4 0.6
3

3.5

4

p
z
 [a.u.]

J co
in

c(p
z) 

[a
rb

. u
ni

ts
]

Figure 10. The coincident Compton profile Jcoinc . Dots: experiment (the dot size represents the
statistical uncertainty); dash–dotted line: ASA-LMTO approximation; dashed line: FP-LMTO
approximation; solid line: FP-LMTO approximation including the LP correction. The inset shows
the curves at low momenta on an enlarged scale.

calculated within the framework of DFT. It has been shown by Lam and Platzman [43] that
the EMD obtained from the Kohn–Sham (KS) orbitals should be augmented by a functional
derivative δEc[n]/δεp of the total correlation energy Ec[n] with respect to the free-particle
energies εp. Thus, the correction accounts for correlations between KS orbitals. This becomes
more transparent if discussed in connection with the homogeneous electron gas. In that case,
the KS electrons are not interacting moving in a constant effective potential, and therefore
the KS orbitals are simply plane waves. The EMD is the step function of the non-interacting
electron gas with no occupied states above the Fermi momentum pF though the Fermi energy
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itself is corrected for the self-energy [44], which, in the DFT-LDA, is given by the exchange–
correlation potential [45]. Application of the above-mentioned correction changes the EMD
to that of the interacting gas where due to electron–electron interaction quasiparticle states
are populated above pF . The solid curve in figure 10 incorporates in addition to the FP-
LMTO correction this Lam–Platzman (LP) correction. The LP correction further improves
the agreement between experiment and theory. We have also calculated the LP correction for
graphite and fullerene but it is vanishingly small for these cases. We mention that the band
structures for the occupied states from the two theories a very similar. Differences—including
those of bandwidths and gaps—are at the mRyd level and would thus be hardly detectable on
an absolute scale, e.g. by angle-resolved photoemission experiments [1]. Though the EMDs
of the two theories also differ by a few per cent only, this effect can be detected by means of
Compton scattering unambiguously.

4.4. Cu–Ni alloy

In this section we will report on the influence of alloying by comparing the EMD of
Cu0.50Ni0.50 with those of its pure constituents [46]. The electronic structure of this 3d
transition-metal solid-solution alloy has received extensive attention. The Cu–Ni system
is completely soluble over the whole concentration range, i.e. there is no miscibility gap
yielding single-phase disordered fcc alloys. Substantial improvement has been achieved in
the theoretical understanding of the electronic structure of disordered alloys using a general
multiple-scattering formalism. Three principal approximations have been investigated:

(i) the virtual-crystal approximation (VCA), where the effective potential of the alloy is the
average of those of the pure constituents,

(ii) an average t-matrix approximation (ATA) and
(iii) the coherent potential approximation (CPA), where a self-consistency requirement is

introduced to obtain the single-site t-matrix [47,48]. It is this property of the CPA which
makes it preferable to apply, especially for alloys of high concentrations.

The underlying Green’s function technique of the multiple-scattering problem is similar to
that of the Korringa–Kohn–Rostoker theory (KKR) [49, 50]. Bansil and co-workers [51, 52]
have extensively investigated the Cu–Ni system theoretically. On the experimental side, poly-
crystalline CuxNi1−x alloys have been investigated by means of conventional Compton scat-
tering [53] and the CPs were compared with those from KKR-CPA calculations. Qualitative
agreement was found, though at small momenta the influence of alloying was predicted by
theory to be stronger than that revealed by experiment.

Since self-supporting Cu or Ni foils with diameters of 8 mm and thicknesses of 20 nm
cannot be prepared, we have evaporated 22 nm Cu followed by 22 nm Ni onto a 30 nm thin
C foil acting as a backing. The backing was made by condensation of evaporated carbon atoms
on a thin betaine film which was finally dissolved in water, and the carbon film was mounted
on a frame. Both Cu and Ni were evaporated on the free-standing carbon backing at rates of
about 0.5 nm s−1, and the films condensed at room temperature. In order not to lose beam
time by using the heating procedure, we decided to prepare two sandwich foils simultaneously,
where the second was heated at about 500 ◦C for 2 h and then furnace cooled. The data of
Almazouzi et al [54] yield a diffusion coefficient of about D = 2 × 10−19 m2 s−1 giving
for a heating time of t = 7 × 103 s a diffusion length x = 2

√
Dt = 80 nm. This is four

times the Cu (or Ni) thickness. That an alloy has in fact been formed by this heat treatment
was confirmed by x-ray diffraction (XD) experiments either made with the sandwich or the
annealed specimen. Figure 11 shows the (111) reflections of Cu and Ni in the case of the
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Figure 11. The (111) reflections of the sandwich foil (open circles) and the heat-treated foil (filled
circles).

sandwich (open circles) or the (111) reflection (filled circles) of the alloy in the case of the
heat-treated film. Since the lattice parameter of the alloys changes almost linearly between
those of the constituents [55], the measurement reveals that within the experimental uncertainty
a 50:50 alloy has been formed.

To improve the statistics we have summed up all events for a constant pz to obtain a
coincident Compton profile Jcoinc, which has been evaluated in absolute units by normalizing
it to the effective number Zeff of electrons contributing to it. Figure 12 shows the difference
 J = Jcoinc(sandwich) − Jcoinc(alloy) as a function of pz (stars). As mentioned above, we
used two different foils; one was untreated, the other was heat treated. If the difference between
the measurements is attributed to the influence of alloying, one has to assume that the two foils
are almost identical with regard to the sandwich composition and the backing. To remove any
doubts, we later repeated the experiment with one foil only; first, measurements were made,
then it was heat treated and, finally, measurements were made again. The result is shown by
the filled circles in figure 12; it demonstrates the reliability of the two-foil experiment. Due
to improved statistics, an alloying effect is clearly observable. At pz = 0 it amounts to about
2% of the total coincident profile, i.e. it is a rather small effect. We compare in figure 12 also
with the experimental non-coincident CP difference  J = (JCu + JNi)/2 − JCu0.5Ni0.5 [53].
Despite the oscillations, the general trend of the experimental points (open circles) agrees
nicely with our results. The oscillatory behaviour might be an artifact introduced by the
numerical procedure of data processing [53]. Neither data processing such as a deconvolution
procedure accompanied by frequency filtering nor background subtraction has been applied to
our data. This might be viewed in the light of a remark made by Bansil et al [56] that in their
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Figure 12. The coincident Compton profile (CP) difference (stars and filled circles) and the non-
coincident CP of reference [53] (open circles). The solid curve represents KKR-CPA theory [53].

non-coincident Compton scattering experiments on Cu–Ni single crystals, absolute values of
experimental CPs are difficult to interpret due to the presence of a background contribution of
uncertain origin. The solid line in figure 12 represents KKR-CPA theory [46, 53]. In view of
the smallness of the effect, a reasonable agreement between theory and experiment is observed.
We emphasize that both experiment and theory are on an absolute scale in figure 12.

The use of ultrathin target foils, in particular, opens up the possibility of studying a
large class of random binary alloys that are produced far from thermodynamic equilibrium.
Instead of producing the alloys by interdiffusion, they could be made either by simultaneous
evaporation and condensation of the constituents or by co-sputtering. In this way arbitrary
alloy compositions are achieved that would otherwise be impossible to get from the melt. On
the other hand, KKR-CPA calculations are independent of thermodynamic conditions.

5. Summary

We have shown that by coincident detection of the scattered x-ray photon and its recoil electron,
the complete 3D electron momentum density of solids can be measured. Examples for graphite,
fullerene and aluminium are given and the experimental EMDs are compared with theoretical
ones obtained from band-structure calculations. In the case of graphite, FP-LMTO and MAPW
results describe the experimental EMD better than a pseudopotential calculation. For fullerenes
the bending of graphene sheets to form a buckyball changes the EMD in a characteristic way
which is revealed by experiment. The Fourier transforms of the density functional wave
functions are not really the wave functions in momentum space. Thus the EMD should be
corrected, an effect first noticed by Lam and Platzman [43]. For aluminium this correction
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could be verified. The influence of alloying on the EMD was studied in the Cu–Ni system and
the results are in satisfactory agreement with a KKR-CPA theory.

Finally, it might be appropriate to comment on non-coincident Compton scattering
work, which nowadays is usually high-resolution Compton spectroscopy based on Bragg
spectrometers. If directional Compton profiles (CP) are compared with theory, the situation
seems to be somewhat confusing: whereas in the cases of Be [57] and Al [58] almost perfect
agreement is achieved, for materials like Li, Na [59, 60], Si [61] or Cu [62], deviations up
to 15% are observed. It is not obvious whether theory or experiment is responsible for this
discrepancy [61]. Due to this uncertainty, there seems to be a tendency to emphasize more
differences of directional CPs—or power spectra respectively [63,64]—and derivatives of CPs
which are especially sensitive to features of the Fermi topology (fermiology). We also mention
that due to rather low incident x-ray energies (10 keV), typical in high-resolution experiments,
doubts arose about the validity of the impulse approximation due to strong electron–hole
interaction in the final state [65].
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